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1.	 INTRODUCTION	 or' 	 QUAL121Y

The utility of numerical methods for predicting transonic flows

over'wings and bodies is by now well established. The computer pro-

gram FL022, based on a method presented at the 1973 IFIP Symposium on

Computing Methods [1], has actually been widely used to calculate the

aerodynamic performance of wings of transport aircraft. Provided that

a correction is made for the disalacement effect of the viscous bound-

ary layer, this code has been found to give predictions which are

accurate enough to serve as a useful design guide [2]. The salient

features of the code are:

(1) the use of a potential flow approximation to the equations of

motion

(2) the use of upwind differencing in the supersonic zone to simulate

the region of dependence of the flow, and to prevent the appear-

ance of expansion shock waves which would violate the entropy

inequality

(3) the use of a relaxation procedure based on an artificial time

dependent equation to solve the difference equations

(9) the use of a curvilinear coordinate system generated by a sequence

of simple transformations to-produce coordinate surfaces following

the wing shape.

The use of the potential flow approximation greatly reduces the

amount of computation required. Since the resulting flow is irrotat-ion-

al, it is consistent to approximate shock waves by discontinuities

across which entropy is conserved. This approximation has been found

quite satisfactory in practice, since the shock waves generated by air-

planes cruising at subsonic speeds are generally quite weak. In fact

the appearance of stronger shock waves marks the onset of drag rise,

which sets an upper bound on the cruising speed. In order to obtain a

unique solution to the potential flow equation, it is necessary to

* This work was supported by the Office of Naval Research under Contract
N00014-77-C-0032, and also by NASA under Grants NGR 33-016-167 and
NGR 33-016-201. The calculations were performed at the ERDA Mathe-
matics and Computing Laboratory, under Contract EY-76-C-02-3077.*000.
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The utility of numerical nethods for predicting transonic: flows

over wings and bodies is by now well established. The computer pr.o-

gr,-un FL022, based on a method presented at the 1973 IF'IP Symposium on

Computing Methods (1), has actually been widely used to calculate the

aerodynamic performance of dings of transport aircraft. Provided that

a correction is made for the dis placement effect of the viscous bound-

ary layer, this code has been found to give predictions which are

accurate enough to serve as a useful design guide [2]. The salient

features of the code are:

(1) the use of a potential flow approximation to the equations of

motion

(2) the use of unwind differencing in the supersonic zone to simulate

the region of dependence of the flow, and to prevent the appear-

ance of expansion shock waves which would violate the entropy

inequality

(3) the use of a relaxation procedure based on an artificial time

dependent equation to solve the difference equations

(4) the use of a curvilinear coordinate system generated by a sequence

of simple transformations to produce coordinate surfaces following

the wing s1iape .

The use of the potential flow approximation greatly reduces the

amount of computation required. Since the resulting flog: is irrotati.on-

al, it is consistent to approximate shock waves by discontinuities

across which entropy is conserved. This approximation has been found

quite satisfactory in practice, since the shock eaves generated by air-

planes cruising at subsonic speeds are generally quite weak. In fact

the appearance of stronger shock waves darks the onset of drag rise,

which sets an upper bound on the cruising speed. In order to obtain a

unique solution to the potential flow equation, it is necessary to

This work was supported by the Office of Naval Research under Contract
N00014-77-C-0032, and also by NP.SA under Grants NGR 33-016-167 and
NGR 33-016-201. The calculations were perforwed at the :DA
matics and Computing Laboratory, under Contract EY-76-C-02-3077.*000.
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exclude expansion shock waves, corresponding to the condition that

entropy can only increase. The use of upwind differencing in the

supersonic zone, first introduced by Muiman and Cole [3], has been

found an effective way to enforce the entropy condition. The non-

linear equations generated by the discrete approximation are not easy

to solve. The use of a relaxation process modeled on an artificial

time dependent equation (A] has been found to give reliable and

acceptably fast convergence.

The main disadvantages of the scheme used in FL022 are the use of

nonconservative difference formulas, which result in a failure to sat-

isfy conservation of mass across shock waves, and the difficulty of

finding suitable transformations of coordinates to permit the treatment

of more complex geometric configurations. The method to be described

here is an attempt to overcome these shortcomings, while retaining the

successful features of the previous method. The basic idea is to use

a discrete approximation which directly represents a balance of the

mass flow through small volume elements. This leads to a relatively

simple treatment of the potential flow equation in conservation form.

The volume elements, are distorted cubes generated by local trilinear

transformations defined by the element vertices. Elements of this kind

can be packed around any reasonably smooth configuration. The subson..c

difference formulas can conveniently be derived from the Bateman -varia-

tional principle [5]. A directional bias is introduced in the super-

sonic zone by adding an artificial viscosity, which is constructed in

such a way as to produce an effective switch to upwind d,ifferencing.

This serves to prevent the appearance of expansion shock waves. The

artificial viscosity has a divergence form, so that the conservation

form of the equations is preserved by the difference scheme, and proper

shock jump relations, consistent with the isentropic approximation,

are satisfied in the limit as the mesh width is decreased to zero [6].

The most promising alternative to the use of artificial viscosity to

enforce the entropy condition appears to be the optimal control method

proposed by Glowinski and Pironneau [7], in which the entropy condition

is represented by penalty functions.

I	 ORR,;,NAI. Pdt',V iG
2.	 FORMULATION OF THE EQUATIONS 	 Ole' POUR QUALITY

The flow is assumed to be isentropic and to satisfy the equations

of potential flow. Let q be the velocity vector, with magnitude q ,

and P the density. Then the potential flow equation can be written in

conservation form as



( 2 ) q= V¢
i

it

V • ( pq) = 0

where q is the gradient of the p(Lential .

Let a be the local. speed of sound, and M the P:ach number q/a. Also let
i MW , q^ = 1 and pW = 1 be the Mach number, speed and density of the

uniform flow at infinity. Then the local density is given by the

formula

(3) A = i t + 21 r.2	 - 
q2) 11/ (Y-1)

`	 ll	 _J

where y is the ratio of specific heats, and the pressure and speed of

sound follow from the relations

Y-1

(4) P = p
Y

2	 a2 - p
Y M^	 M2

2

Equation (1) is hyperbolic in supersonic flow (14 > 1) and elliptic

in subsonic flow, and shock waves will generally appear if there is a

region of supersonic flow. The shock jump conditions are

(a) continuity of ifi implying continuity of the tangential velocity

i	 component
i

(b) continuity of pqn , where q  is the normal velocity component

(c) the entropy condition that q  decreases through the shock.

I	 ,
Under the assumption of isentropic flout, conditions (a) and (b) imply

that the normal component of momentum is not conserved. The resulting

momentum deficiency causes the appearance of a drag force, which is

an approxima tion to the wave drag [3].

The boundary condition at the body is

	

L
(5)	 qn = n = 0

To obtain a unique lifting solution we also impose the Kutta condition

that the flow leaves the trailing edge smoothly with equal velocities

along the upper and lower surfaces. The resulting spanwise variation

in the circulation T = 1 q ds around each section of the wing causes
a vortex sheet to be shed from the trailing edge. The vortex sheet

will be convected with the flow,and roll. up along its side edges. In

the calculations this will be ignored and the vortex sheet will be

assumed to coincide with,a coordinate surfare'. The conditions applied



at the sheet are then

(a)	 the jump 1' in the potential is constant• along lines parallel to

the free stream

(b)	 the normal velocity component qn is continuous through the shock.

According to an analysis of the asymptotic behavior of the potential

in the far field [9), 	 approaches the potential of the undisturbed

uniform flow except in the Trefftz	 plane far downstream, where it

t
satisfies the two dimensional Laplace equation for the flow induced by

i
the vortex sheet.

In a finite domain R with boundary S equations (1)-(5)	 are equiva-

lent to the Bateman variational principle that

(6)	 T = J p dR
R

is stationary.	 In fact according to equations (3) and	 (4), a varia-

tion 60 causes a variation

dp = - Pq • dq_	
-Thus

^. r

dT = - 
J	

pq • 0 d^	 dR

R

= J do 0 ' (PSI)	 dR -	 6^ P qn as

R	 S

1 and the boundary terms vanish if dQ = 0 or q n = 0.

NUMERICAL SCHEME

The Gateman %ariational principle will be used to dr:rive differ-

ence formulas through the introduction of a discrete approximation to

the integral _I d_fined by equation (6). This leads to a central diff-

erence scheme.	 when such a scheme is used to compute the flow past a

profile with fore and aft symmetry, such a^, an ellipse, the fore and

aft synetry is preserved in the solution, and expansion shocks will

appear in transonic flow. Thus any scheme which is not desymmetrized

I in some way is restricted to subsonic flow. The basic difference

formulas will therefore be modified by the addition of artificial vis-

cosity to introduce the desired directional bias in the supersonic

zone.

In order to represent the Bateman integral, the region in which

the flow is to be computed is divided into distorted cubic cells,

Q



1	 2

X'Y,Z

8

G

o{

r

generated from cubes by separate transformations between local

coordinates X,Y,Z and Cartesian coordinates x,y,z, as illustrated

in Figure 1.

0

7	 8

3

3	 4

5	
G

2

1

X,Iy,z

Figure 1

The vertices of the cells define the computational mesh, and subscripts

i,j,k will be used to denote the value of a quantity at a mesh point.

In order to reduce the amount of computation a simple one point inte-

gration scheme will be used, in which the contribution of each cell

to the integral will be evaluated as the pressure at the cell center

(defined as the point mapped from the center of the cube in the X,Y,Z

coordinate ,system) multiplied by the cell volume. Quantitites eval-

uated at the cell centers will be denoted by subscripts i+ 1/2, j+1/2,

k+1/2. Averaging and difference operators will be introduced through

the notation

I

I

1
u Xfi , j , k = 2 (fi_+1/2,j,k+ fi-1/2,j,k)

(S
Xfi , j , k	 fi+1/2,j,k - fi-1/2,j,k

It will also be convenient to use notations such as

VXXf = IaX WXf ) ,

6 XXf = 6X (6 Xf) ,

uXYf = PX(UYf)

aXYf = 6X(aYf)

Numbering the vertices of a particular cell from 1 to 8 as in

Figure 1, the vertices in the local coordinates are assumed to be at

Xi = 12 ,Yi = + 2 , Z = +2	
. If xi ,y,	 are the Cartesian coordi-

nates of the ith vertex, the local mapping is then defined by the

trilincar form
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xZ I

yZJzz

ien the metric tensor is defined

x 
yy

z 

T

li
i'

a
(7)	 x	 8 ), xi lq •1- X. X) (L + 

YjY) (^ 4 ziz)
i=1

with similar formulas for y, z. The potential is assumed to have a

similar form inside the cell

8

(a)	 _' s ill ^ i (^ + XiX) (^ I. Y Y ) (4 ^ ziz)

These formulas preserve the continuity of x,y,z and ^ at the cell.

boundaries because the mappings in each cell reduce to the same bilin-

ear form at the common face. At the cell center the derivatives of

the transformation can be evaluated by formulas such as

xX = 4 (x2 - x
l 4 xn - x3 + x8 - xS 4- xs - x7 ) 

= IIYZdXx

Similarly it follows from equation (8) that

OX ° PYZY ,	 ^XY = I'zdX),o ,	 4'XYZ = aXYZO

In order to evaluate the contribution of each cell to the Bateman

integral it is now necessary to exuN,-O+ss the pressure and cell volume in
terms of the local derivatives of the mapping and the potential. Let II

Pe the transformation matrix

x 
(9)	 II =	 yX

1Z 

and let h be the determinant of H.

by the matrix

i	 (lo)
	

G = FIT fI

Also the contravariant velocity components are U,V,W where

U	 ^X

(11)	 V = G-1	 ^y
W	

^z
Then

q2 = USX + Vey + Wiz
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i,

and the variation in 	 due to a variation Sys is

2

Sp _ PS S.	 - -AUSIX + V60 1 WS1,

According to the one point integration scheme, the contribution from

the cell centered at 01/2 1 J+1/2, k+1/2 is the volume of the cell,

given by the determinant 11i+I/2,+l/2,k+l/2 I multiplied by Lhe pres-
sure 

pi+1/2,j+1/2,k•1.1/2' On setting

a ^
	 A

r

,	 t
,

ax	 0

ONIJ &

and col...ocLing the contributions from the B cells with a common vertex

i,j,k, we then obtain the formula

(12) 11YZ6X (Phu) + PzXSY (P hV ) + N \Y S Z (Phw) = 0

at each interior mesh point. Along the boundary there are only A

cells adjacent. to each mesh point,and equation (12) is correspondingly

modified.

Equation (12) is a discrete approximation to the conservation law

(13) 2X (PhU) .l. ,a` "NIV) 
•h aL 

(Phil)

which can be derived directly from equation (1) by using the tensor

formula for the divergence operator [9J. In fact° we can derive equa-

tion (12) by representing a flux balance through a set of au,riliary

cells, each of which is generated from a cube joining the centers of S

primary cells, as illustrated in Figure 2.

p

Flux balance cell
x1y1Z
	

\,Y,Z

Figure 2



x,y,z X,Y,z

i

1

body surface

In this interpretation (phU)id•1/2,j+1/2,Y.t1/2 is an approximation to

the flux across the face X = 0 of that part of the secondary cell which

lies in the primary cell R in Figure 2. The boundary condition (5)

reduces to U = 0, V = 0 or W = 0 on cell faces which coincide with the

boundary. The flux balance is then represented with secondary cells

bounded on one or more faces by the body surface.as  illustrated in

Figure 3.

Flux, balance cell

i

I I	 Figure 3

i

i

,

The lumping error introduced by the one point integration scheme

now appears as an error introduced by calculating p, h, U, V, ;4 at the

corners of each secondary cell, instead of averaging these quantities

over the cell faces. If the vertices of the primary cells are gener-

ated by a global mapping smooth enough to allow Taylor series expan-

sions of x,y,z as functions of X,Y,z, then the contributions to this

error from adjacent primary cells offset each other, with the result

that equation (12) approximates equation (13) with a second order local

discretization error.

The one point integration scheme has another disadvantage,however,

which can be seen from the following simple example. Setting h = 1,

p = 1, equation (12) reduces in the two dimensional case to

(UYYaXX + "'i-6yY" = 0

which is the rotated Laplacian scheme

^i+l,j+l + ^i=1,j+1 + ^i+l;j-1 + ^i-1,j-1 - 4 ^ij = 0



B

_ 
_Ct—^
A

Flux at C is

( $X ) A + OXY

v

The odd and even points are decoupled, as that high frequency o:;cil-

lations in which yS = 1 at• odd points and -1 
at 

eveneven points are admitted

by the scheme. To overcome this difficulty we can shift the point of

evaluation of the flux ¢ X across the side AB in Figure A from A towards

the center of the side by adding u compensating term - e$XY.

Figure 9

The addition of similar terms on all faces produces the formula

i	 (uYYaXX + 
VI
XX 6YY - ESXYXY ) ^ = 0

which reduces to the usual 5 point second order accurate formula when

'	 e = 1/2, and to the 9 point fourth order accurate formula when e = 1/3.

Similarly in the discrete approximation to equation (13) we want
V

to prevent excessive spatial averaging in the approximation of

^XX,^YY,^ZZ' Allowing for the dependence of p on $X'^Y,^Z 	 the coef-

ficients of $XX,^YY,^ZZ in equation (13) are

AX = ph(gll - U2/a2) l

t	 AY = ph ( g22 - V2/a 2)

AZ = Ph (g 33 - S92/a.7)

where gij are the elements of G-1 . In order to compensate equation

(12),we can use these coefficients to determine the magnitude of the

terms which should be added to shift the locations at which $X,^Y,¢Z

are effectively evaluated in calculating the fluxes across each face,

for example, e Ax" Z 6XY ^ to shift 
^X 

in the Y direction. Collecting

the contributions from each of the 8 primary cells surrounding a

I	 mesh point, we obtain the following formulas. Let



)

^J
I

I

r7

QXY _ (AX + AY)u7,6XY^

with similar formulas for Q
Y Z , 

Q'!,X , and let

QXY7 ` (AX
 + AY

 + AZ)dXY2^

Then the final compensated equation is

'	 (14) N
YZ

GX (phU) + u ZX dy( phV) + uXXdZ(phW)

e{u Z dXYQXY+ u XdYZQYZ+ uY d zXQ ZX- 2 dXYZQXYZ} - 0

^i	 where 0 < e < 1/2, in practice the value e = 1/2 has been used.

I f 	 It remains to add the artificial viscosity required to desymmetrize

the scheme in the supersoni c.- zone. Instead of eltlation (13) we shall

(	 satisfy the modified conservation law

% (phU •FP) + aY (phV+Q) + 8Z (phVT+R) = 0

where the added fluxes P,Q,R are proportional to the cell widths in

the physical domain, with the result that the correct conservation law

i	 is recovered in the limit as the cell width is reduced to zero. The
s

artificial viscosity is designed to produce an effective switch to

upwind differencing in the supersonic zone. Presuming the distribution

of mesh points to be smooth, it is constructed in the following manner.

First ve introduce the switching function
a

µ = h max i0,I1 - a2,}
ll`	 `	 q

and we cons t^:uc. P by the formula

P = u a2 IU26XX+ UVPXY'XY+ wUµ.74X6ZX1^
A A

and Q, R by similar formulas. Then

P	
i.j,k

P	 if U > 0
.(Il

i+1/2,j,k
-Pii1,),k if U < 0

with similar shifts for Q, R. Finally, equation (14) is modified by

the aeflition of

6x  + 6Y  + 6Z 



I 

	

a	 Since It = 0 when q < a, P,Q,R vanish in the subsonic zone. In the

supersonic zone tN-y approximateu U d,	 ^i V d

	

- ^ ^ },^	 ^ ^ yP 1 -Ftli7J dip.

i.. It maymay be verified [11) that tho coefficients of the third deriva-

tives of the potential such as 4) 
.,XX	 Yh.0	 2XX„ , 4' „ , 4' 	 inti:oduced by" 

P,Q,R	 are the same as in the artificial viscosity generated by the

rotated difference scheme which has been previously used in three

dimensional transonic flow calculations [1,2,9].

Finally the nonlinear equations generated by this discretization

process are solved by a generalized rel y-ution method which is derived

by em!*cdding the steady state equation in an artificial time dependent

equation. Thus we solve a discrete approximation to

x (pho+P) + 2Y (phv+Q) + 8Z (1)hI7+R)
Ci

a¢XT + "YT+ Y4ZT + 6OT

where the coefficients a,$ 1 y are chosen to make the flow direction

timelike, as in the steady state equation, and d controls the damp-

	

;	 ing [d)

9	 CONSTRUCTION OF THE MESH

The formulation of the artificial viscosity presupposes a smooth

distrFbution of cells. Also the one point integration scheme will

cause a loss of accuracy if the mesh is not smooth. it is important,

therefore, to use a reasonably smooth mesh. This is most easily

accomplished by using global mappings to generate the mesh points.

All other steps, such as the transformation of the equations of motion,

are then taken over by the numerical scheme.

Swept wing calculations have been performed on a mesh generated

by a sheared parabolic coordinate system, which has bean found to give

good results with earlier methods [1,2,9). r;irst, we introduce

parabolic coordinates in planes containing the wing section by the

transformation

1/2
X + iY	 {[x - x O (z) + i(Y - YO(z))l/t(z)}

L	 = z

where z is the spanwise coordinate, x 0 (z) and y0 (z) define a singular

line just inside the loading edge, and t(z) is a scaling factor which



Cylinder mapped to vertical slit

Figure 6
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can Lie used to control the nueauer of cells covering the wing.J
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X,Y,Z

Figure 5

The effect of this transformation is to unwrap the wing to form a

shallow bump	 as illustrated in Figure S. Then we use a

shearing r,, ,,.,formation

X= X,	 Y= Y - S(X,Z) ,	 Z= Z

to map the wing to the surface ' Y = 0. The mesh is now constructed by

the reverse sequence of transformations from a rectangular grid in the

X,Y,Z coordinate system. The vortex sheet trailing behind the wing is

1	
assumed to coincide with the coordinate surface leaving the trailing

edge. This mesh can be modified to treat wing cylinder combinations

i
by first mapping the cylinder to a vertical slit by a Joukowsky trans-

formation, as illustrated in Figure G, and than using the same sequence

of transfornmalLions to generate a sheared parabolic coordinate arounc.

the wing projecting from the slit.
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An alternative mesh generating scheme for wing fuselage combina-

tions [12) starts by introducing cylindrical coordinates as illustrated

in Figure 7. 0 = m/2

I'
I

i

i

0 = -Tr/2

Cylindrical coordinate system for

wing body combination

Figure 7

In each cylindrical surface the wing section then appears as a Profile

in a channel bounded by the intersection of the cylinder with the

plane of symmetry at 0 = + n/2. This configuration can be mapped to
a channel with a bump on the upper wall, as illustrated in Figure 8,

by the transformation

c = .log (1 - cosh[t))

i

6 - v/2

B —i^
A

0 = -Tr/2

Cr

O

C

B

0 = Tr/2
	

6 = -7r/2

s.

Figure 8

Finally the bump is removed by a shearing transformation.
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'	 TWO eXamples Of numerical calculations are presented in this sec-

tion to illu t:raLe the capability of the finite volu;ae method. The

t	 first nosh generating procedure proposvO in Section 4, the sheared

parabolic coordinate system, was used in these calculations, both of

which were performed on a sequence of three progressively Liner meshes.

After Lho calcula.Lion oil 	 of the first Lwo meshes, the number of

intervals was doubled in each coordinate direction and the interpolated

f
result. was used as the startincl point for the calculation on the now

mesh. The fine mesh contained 160 intervals Jn the :hordwise X direc-

Lion, 16 I ntervals in the normal Y direction, and 32 intervals in the

spanwise 'L direcLion, for a total of 81,920 calls. 100 relaxation

cycles were used on each mash. Such a calculation takes about 15 min-

uLcs on a CDC 7600.
Vhc first example is a calculatiat of 'the flora past the 0NP2A ?16

ruing, for which experimental data is available (13]. The result is

t	 displayed in Figure 9. Separate pressure distributions are shown for

stations at 20, 45, 65 and D5 percent• of the semispan. Section lift

and drag coefficients CL and CD were obtained by integrating the pros-

sure coefficient CP over the profile. The critical pressure cocffici-

{	 ant at which the flow has sonic speed is narked by a horizontal line

On the pressure axis. Although the calculation did 
not includeinclude a

boundary layer, correcL• ion, it- can be seen that the agroement with the

} t	 experimental data is quite good. The triangular shock pattern is

clearly visible in the throo dimensional plot of the pressure distri-

bution (Figure 9f). The front shoal:, eraanaLing from the leading edge
at the ruing root:, mcrgas with the rear shock about three quarters of

the way out across the span. The second example is indicative of the

level of geometric complexity which can be treated with the existing
code. The result is clisplayecl in Figure 10. It is for a Douglas DC 10

wing mounted on a cylinder in a low mid position. The true DC 10 con-

{	 figuration is not exactly modeled, because the code does not: provide

for a wing root- fillet.
These resu 7.ts confirm the promise of the new method. It appears

{ i	 that it can be used to treat configurations of more or less arbitrary
t	 complexity; subject to limits set by the powar of the available comput-

ers. The extension to new configurations is primarily a matter of

dovisinq mesh generating schemes, since the internal computations are

essentially independent: of the configuration, 	 apart from the identi-

ficaLion of which e,lemonts arc the boundary elements.

i^

i



oil Ccmputinq	 in Applie(I
and Ent'jitwerino,
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